随着人工智能的快速发展,大模型技术已成为当今人工智能领域的热门话题。2022年底以来,认知大模型掀起通用人工智能的全新热潮,其历史意义被认为“不亚于PC和互联网的诞生”。2024年12月底,深度求索公司先后发布DeepSeek V3和DeepSeek R1大模型,并快速“出圈”,提升了我国在全球人工智能领域的影响力,引发国内外广泛关注,在全球范围掀起又一轮大模型发展浪潮。鉴于此,梳理大模型技术的进展和产业发展现状,剖析其面临的困难挑战以及未来发展趋势,并找到针对性的对策,有助于我们全面深入地掌握大模型这一前沿领域,加快推动我国大模型技术与产业的发展迈上新台阶。
大模型技术及产业发展现状
2017年,Google提出Transformer架构,成为大模型领域主流算法基础。次年,OpenAI发布GPT-1、Google推出BERT,预训练大模型由此成为自然语言处理主流。此后,AI大模型技术不断突破。2020年起,OpenAI陆续推出GPT-3、GPT-3.5、GPT-4,AI能力多轮提升。至2024年,全球大模型井喷式发展。OpenAI发布的文生视频Sora模型,推动大模型技术向语音、视觉等多模态及学科交叉方向拓展;随后推出的GPT-4o能够实时处理多类型信息,显著提升了人机对话响应速度;发布的o1-Preview大模型则大幅提高了复杂推理能力。同年末,又推出了o1pro、o3等新一代推理大模型,向通用人工智能进一步迈进。在国内,众多公司以及高校和科研机构均加大投入,发布众多通用大模型,形成了“百花齐放”的景象。例如,百度的“文心一言”、阿里的“通义千问”、字节跳动的“豆包”以及科大讯飞的“讯飞星火”,特别是深度求索公司发布的DeepSeek V3和DeepSeek R1大模型,通过打破传统的“算力竞赛”规则并完全开源,成为国内的一个里程碑事件。